wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If m sinθ=n sinθ+2α, prove that tanθ+α cotα=m+nm-n. [NCERT EXEMPLAR]

Open in App
Solution

Given: m sinθ=n sinθ+2α

mn=sinθ+2αsinθ

Applying componendo and dividendo, we get

m+nm-n=sinθ+2α+sinθsinθ+2α-sinθm+nm-n=2sinθ+2α+θ2cosθ+2α-θ22sinθ+2α-θ2cosθ+2α+θ2m+nm-n=sinθ+α cosαsinα cosθ+αm+nm-n=tanθ+α cotα

tanθ+α cotα=m+nm-n

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon