wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If msinθ=ncosθ then show that :tanθ+cotθtanθcotθ=nsinθ+mcosθnsinθmcosθ=n2+m2n2m2

Open in App
Solution

msinθ=ncosθsinθ=nmcosθ

tanθ=nmcotθ=mn

tanθ+cotθtanθcotθ=nm+mnnmmn

=(n2+m2mn)(n2m2mn)

tanθ+cotθtanθcotθ=n2+m2n2m2

nsinθ+mcosθnsinθmcosθ=n(nm)cosθ+mcosθ[n(nm)cosθmcosθ]

=cosθ[n2m+m]cosθ[n2mm]

=(n2+m2)(n2m2)

nsinθ=mcosθnsinθmcosθ=n2+m2n2m2

tanθ+cotθtanθcotθ=nsinθ+mcosθmsinθmcosθ=n2+m2n2m2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon