wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If msin θ=nsin(θ+2α), then
prove that tan(θ+α)cotα=m+nmn

Open in App
Solution

Given:
msin θ=nsin(θ+2α)
sin(θ+2α)sinθ=mn
sin(θ+2α)+sinθsin(θ+2α)sinθ=m+nmn
[ab=cda+bab=c+dcd]
2sin(θ+α)cosα2cos(θ+α)sinα=m+nmn
⎢ ⎢ sinC+sinD=2sinC+D2cosCD2andsinCsinD=2cosC+D2sinCD2⎥ ⎥
2sin(θ+α)cosα2cos(θ+α)sinα=m+nmn
tan(θ+α)cotα=m+nmn
[ cotθ=cosθsinθ]

Hence, Proved.

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon