Given:
msin θ=nsin(θ+2α)
⇒sin(θ+2α)sinθ=mn
⇒sin(θ+2α)+sinθsin(θ+2α)−sinθ=m+nm−n
[∵ab=cd⇒a+ba−b=c+dc−d]
⇒2sin(θ+α)cosα2cos(θ+α)sinα=m+nm−n
⎡⎢
⎢⎣∵ sinC+sinD=2sinC+D2cosC−D2andsinC–sinD=2cosC+D2sinC−D2⎤⎥
⎥⎦
⇒2sin(θ+α)cosα2cos(θ+α)sinα=m+nm−n
⇒tan(θ+α)cotα=m+nm−n
[∴ cotθ=cosθsinθ]
Hence, Proved.