If mtan(θ−30o)=ntan(θ+120o), show that cos2θ=(m+n)2(m−n)
Open in App
Solution
mn=tan(θ+120o)tan(θ−30o)=tanAtanB=sinAcosBcosAsinB where A=θ+120o;B=θ−30o Applying componendo and dividendo, we get m+nm−n=sin(A+B)sin(A−B)=sin(2θ+90o)sin150o=cos2θsin30o=2cos2θ ∴cos2θ=m+n2(m−n)