wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If mtan(θ30o)=ntan(θ+120o), show that cos2θ=(m+n)2(mn)

Open in App
Solution

mn=tan(θ+120o)tan(θ30o)=tanAtanB=sinAcosBcosAsinB
where A=θ+120o;B=θ30o
Applying componendo and dividendo, we get
m+nmn=sin(A+B)sin(AB)=sin(2θ+90o)sin150o=cos2θsin30o=2cos2θ
cos2θ=m+n2(mn)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon