wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If mtan(θ30o)=ntan(θ+120o) then prove that cos2θ=(m+n)2(mn).

Open in App
Solution

Now,
mtan(θ30o)=ntan(θ+120o)
or, tan(θ30o)tan(θ+120o)=nm
or, sin(θ+120o).cos(θ30o)sin(θ30o).cos(θ+120o)=mn
or, sin(θ+120o).cos(θ30o)+sin(θ30o).cos(θ+120o)sin(θ+120o).cos(θ30o)sin(θ30o).cos(θ+120o)=m+nmn [ By componendo and dividendo]
or, sin{(θ+120o)+(θ30o)}sin{(θ+120o)(θ30o)}=m+nmn
or, sin(90o+2θ)sin150o=m+nmn
or, sin(90o+2θ)cos60o=m+nmn
or, 2sin(90o+2θ)=m+nmn
or, 2sin(90o+2θ)=(m+n)2(mn)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon