wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If m=tanθ+sinθ and n=tanθ+sinθ. Show that m2n2=4mn

Open in App
Solution

Given m=tanθ+sinθ and n=tanθsinθ
We have m2n2=(m+n)(mn)
=(tanθ+sinθ+tanθsinθ)(tanθ+sinθtanθ+sinθ)
=(2tanθ)(2sinθ)
=4tanθsinθ .....(1)
mn=(tanθ+sinθ)(tanθsinθ)
=tan2θsin2θ
=sin2θ(1cos2θcos2θ)
=sin2θ(sin2θcos2θ)
=sin2θtan2θ
mn=sin2θtan2θ
=sinθtanθ
4mn=sinθtanθ .....(2)
From (1) and (2) we have
m2n2=4mn


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Euler's Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon