If m=tanxis the slope of the tangent to the curve ey=1+x2 then
tanx>1
tanx<1
-1≤tanx≤1
Explanation for correct option
We know that slope of a tangent is dydx=m
Given m=tanx
Therefore, dydx=m=tanx
Now, given equation of the curve is ey=1+x2
Now differentiating with respect to x we have
⇒eydydx=2x⇒dydx=2xey⇒dydx=2x1+x2
∴x-12≥0∀x∈R⇒x2-2x+1≥0⇒x2+1≥2x⇒1x2+1≤12x⇒2xx2+1≤1
∴dydx≤1⇒tanx≤1
Hence, option(C) i.e. -1≤tanx≤1 is correct
If m is the slope of a tangent to the curve ey=1+x2, then