If m varies then, let the range of c for which the line y=mx+c touches the parabola y2=8(x+2) be (−∞,−k]∪[k,∞). Find k2
Open in App
Solution
y=mx+c touches the parabola y2=8(x+2) ∴(mx+c)2=8(x+2) m2x2+x(2mc−8)+c2−16=0 ...... (i) line touch the parabola so D = 0 of equation (i) 4(mc−4)2−4m2(c2−16)=0 m2c2−8mc+16−m2c2+16m2=0 2m2−mc+2=0 Since m is real D≥0 c2−16≥0 c∈(−∞,−4]∪[4,∞) ∴k2=2