If M(x,y) is equidistant from A(a+b,b−a) and B(a−b,a+b), then
Distance between two points =√(x2−x1)2+(y2−y1)2
Given, Distance between the points (x,y);(a+b,b−a)= Distance between (x,y);(a−b,a+b)
√(a+b−x)2+(b−a−y)2=√(a−b−x)2+(a+b−y)2
=>(a+b−x)2+(b−a−y)2=(a−b−x)2+(a+b−y)2
=>(a+b)2+x2−2(a+b)x+(b−a)2+y2−2(b−a)y=(a−b)2+x2−2(a−b)x+(a+b)2+y2−2(a+b)y
=>−2ax−2bx−2by+2ay=−2ax+2bx−2ay−2by
=>4bx=4ay
=>bx−ay=0