Given that,
cosA=cosB=−12
If A does not lie in the IInd quadrant then,
cosA=−12
cosA=−cos600
cosA=cos(1800+600)In3rdQuadrant
A=2400
If B does not lie in the IIInd quadrant then,
cosB=−12
cosB=−cos600
cosB=cos(1800−600)In3rdQuadrant
B=1200
Find the value of
4sinB−3tanAtanB+sinA
=4sin1200−3tan2400tan2400+sin1200
=4sin(1800−600)−3tan(1800+600)tan(1800+600)+sin(1800−600)
=4sin600−3tan600tan600+sin600
=4×√32−3√3√3+√32
=4√3−6√32√3+√3
=−2√33√3
=−23
Hence, this is the answer.