If cosA=cosB=−12 and A does not lie in the second quadrant and B does not lie in the third quadrant, then find the value of 4sinB−3tanAtanB+sinA
Consider the given equation.
4sinB−3tanAtanB+sinA …... (1)
and cosA=cosB=−12
Now,
cosA=−12
⇒cosA=−cos600 when A does not lie in the second quadrant.
⇒cosA=cos(1800+600)
⇒cosA=cos2400
⇒A=2400
Now,
cosB=−12
⇒cosB=−cos600 when B does not lie in the third quadrant.
⇒cosB=cos(1800−600)
⇒cosB=cos1200
⇒B=1200
Substituting the value of A and B in equation (1) and we get,
4sin1200−3tan2400tan1200+sin2400
⇒4×sin(1800−600)−3tan(1800+600)tan(1800−600)+sin(1800+600)
⇒4×sin600−3×tan600tan600+sin600
⇒4×√32−3×√3√3+√32
⇒2√3−3√322√3+√32
⇒−√33√3
⇒−13
Hence, this is the answer.