wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3 and secθcosθ=b3, then a2b2(a2+b2)=

Open in App
Solution

cscθsinθ=a3
1sinθsinθ=a3
1sin2θsinθ=a3
a3=cos2θsinθ=cotθcosθ ....... (i)
Also, secθcosθ=b3
1cosθcosθ=b3
b3=1cos2θcosθ=sin2θcosθ
b3=tanθsinθ ....... (ii)

Consider,
a2b2(a2+b2)=[cotθcosθtanθsinθ]2/3[a2+b2]
=[sinθcosθ]2/3[(cotθcosθ)2/3+(tanθsinθ)2/3]
=[sinθcosθ]2/3[[cos2θsinθ]2/3+[sin2θcosθ]2/3]
=[sinθcosθ]2/3cos43θcos23θ+sin43θsin23θ[sinθcosθ]2/3
=cos2θ+sin2θ
=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon