1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
If cosecθ -...
Question
If
c
o
s
e
c
θ
−
sin
θ
=
a
3
and
sec
θ
−
cos
θ
=
b
3
, then
a
2
b
2
(
a
2
+
b
2
)
=
Open in App
Solution
csc
θ
−
sin
θ
=
a
3
1
sin
θ
−
sin
θ
=
a
3
1
−
sin
2
θ
sin
θ
=
a
3
a
3
=
cos
2
θ
sin
θ
=
cot
θ
cos
θ
.......
(
i
)
Also,
sec
θ
−
cos
θ
=
b
3
1
cos
θ
−
cos
θ
=
b
3
b
3
=
1
−
cos
2
θ
cos
θ
=
sin
2
θ
cos
θ
b
3
=
tan
θ
sin
θ
.......
(
i
i
)
Consider,
a
2
b
2
(
a
2
+
b
2
)
=
[
cot
θ
cos
θ
tan
θ
sin
θ
]
2
/
3
[
a
2
+
b
2
]
=
[
sin
θ
cos
θ
]
2
/
3
[
(
cot
θ
cos
θ
)
2
/
3
+
(
tan
θ
sin
θ
)
2
/
3
]
=
[
sin
θ
cos
θ
]
2
/
3
[
[
cos
2
θ
sin
θ
]
2
/
3
+
[
sin
2
θ
cos
θ
]
2
/
3
]
=
[
sin
θ
cos
θ
]
2
/
3
⎡
⎣
cos
4
3
θ
cos
2
3
θ
+
sin
4
3
θ
sin
2
3
θ
[
sin
θ
cos
θ
]
2
/
3
⎤
⎦
=
cos
2
θ
+
sin
2
θ
=
1
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
If cosec θ − sin θ = a
3
, sec θ − cos θ = b
3
, prove that a
2
b
2
(a
2
+ b
2
) = 1