The correct option is B (1,3)
f(x)=x5−5x4+5x3−10
f′(x)=5x4−20x3+15x2
For maxima or minima,
f′(x)=0
⇒5x2(x−1)(x−3)=0
⇒x=0,1,3
f′′(x)=20x3−60x2+30x
f′′(x)<0 at x=1
Hence f(x) has a local maximum at x=1
f′′(x)>0 t x=3
Hence f(x) has a local minimum at x=3.
So, a=1,b=3