If P=2x2+3x2y+3xy-5y2, Q=-5x2-4x2y+2xy+3y2 and R=-3x2-x2y+5xy-2y2 ,
Show that P+Q-R=0.
Step 1: Find P+Q.
Given algebraic expressions: P=2x2+3x2y+3xy-5y2, Q=-5x2-4x2y+2xy+3y2 and R=-3x2-x2y+5xy-2y2.
Show that: P+Q-R=0.
Now,
P+Q=2x2+3x2y+3xy-5y2+-5x2-4x2y+2xy+3y2
P+Q=2x2+3x2y+3xy-5y2-5x2-4x2y+2xy+3y2
Arrange the variables in proper columns and solve them,
2x2+3x2y+3xy-5y2-5x2-4x2y+2xy+3y2_____________________-3x2-x2y+5xy-2y2
Thus, P+Q=-3x2-x2y+5xy-2y2
Step 2: Show that P+Q-R=0.
Since, P+Q=-3x2-x2y+5xy-2y2
P+Q-R=P+Q-R
P+Q-R=-3x2-x2y+5xy-2y2--3x2-x2y+5xy-2y2
P+Q-R=-3x2-x2y+5xy-2y2+3x2+x2y-5xy+2y2
-3x2-x2y+5xy-2y2+3x2+x2y-5xy+2y2____________________0
Hence, P+Q-R=0.