If sinθ1-θ2=12 and cosθ1+θ2=12,0°<θ1+θ2<90°,θ1>θ2, then find θ1and θ2.
Step-1 Forming equation in θ1 and θ2
sinθ1-θ2=12⇒sinθ1-θ2=sin30°⇒θ1-θ2=30°...(1)∵sin30°=12
Similarly,
cosθ1+θ2=12⇒cosθ1+θ2=cos60°⇒θ1+θ2=60°...(2)∵cos60°=12
Step-2 Solution of equations:
Now,
θ1-θ2=30°...(1)
θ1+θ2=60°...(2)
Adding (1) and (2),
⇒2θ1=90°
⇒θ1=45°
Putting θ1=45°in (2)
45°+θ2=60°
⇒θ2=15°
Hence, the values of θ1 and θ2 is 45° and 15° respectively.
{1(sec2θ−cos2θ)+1(cosec2θ−sin2θ)}(sin2θcos2θ)=1−sin2θcos2θ2+sin2θcos2θ
Ifsinθ1+θ2=1andcosθ1-θ2=1,0°<θ1+θ2≤90°,θ1≥θ2then find θ1andθ2.
If θ1 and θ2 are acute angles, such that tanθ1=12,tanθ2=13 and tanθ1+θ2=tanθ1+tanθ21-tanθ1tanθ2, then find θ1+θ2.