The correct option is B x1>199
3y2+4y−6x+8=0
⇒3(y2+43y).=6x−8
⇒(y+23)2=2(x−43)+49=2(x−109)
Y2=4aX, where Y=y+23,X=x−109,a=12
Let the normal through the point (x1,−23) on the axis (the axis is Y=0 i.e., y=−23) meet the parabola at (at2,2at).
∴ its equation is Y+tX=2at+at3.
This passes through (X1,0) where X1=x1−109; corresponding Y=−23+23=0
∴t(x1−109)=2at+at3⇒t=0or
⇒at2=x1−109−2a
⇒x1−109−2×12>0
⇒x1>199