If matrix A=⎡⎢⎣01−14−343−34⎤⎥⎦, can be written as B+C where B is symmetric matrix and C is skew-symmetric matrix, then B−C is equal to
A
⎡⎢⎣034−30−7−470⎤⎥⎦
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
⎡⎢⎣01−14−343−34⎤⎥⎦
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
⎡⎢⎣0−3−43074−70⎤⎥⎦
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
⎡⎢⎣0431−3−3−144⎤⎥⎦
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D⎡⎢⎣0431−3−3−144⎤⎥⎦ Here matrix A is expressed as the sum of symmetric and skew-symmetric matrix. Then B=12(A+AT) and C=12(A−AT) Now A=⎡⎢⎣01−14−343−34⎤⎥⎦⇒AT=⎡⎢⎣0431−3−3−144⎤⎥⎦ ⇒B=12⎛⎜⎝⎡⎢⎣01−14−343−34⎤⎥⎦+⎡⎢⎣0431−3−3−144⎤⎥⎦⎞⎟⎠=12⎡⎢⎣0525−61218⎤⎥⎦ and C=12⎛⎜⎝⎡⎢⎣01−14−343−34⎤⎥⎦−⎡⎢⎣0431−3−3−144⎤⎥⎦⎞⎟⎠=12⎡⎢⎣0−3−43074−70⎤⎥⎦ ∴B−C=⎡⎢⎣0431−3−3−144⎤⎥⎦