If matrix A is an circulant matrix whose elements of first row are a,b,c>0 such that abc=1 and AτA=1 then a3+b3+c3 equals to,
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B4 Given ATA=1 ⎡⎢⎣abcbcacab⎤⎥⎦⎡⎢⎣abcbcacab⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦ ⎡⎢
⎢⎣∑a2∑ab∑ab∑cb∑b2∑bc∑ac∑ac∑c2⎤⎥
⎥⎦=⎡⎢⎣100010001⎤⎥⎦ ⇒∑a2=∑b2=∑c2=1 and ∑ab=∑bc=∑ca=0 ...(1) Now, a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abc a3+b3+c3=(a+b+c)[1−0]+3(1) a3+b3+c3=(a+b+c)+3 ....(2) Now, ∵(a+b+c)2=∑a2+2∑ab=1 ⇒a+b+c=1. Substitute this value in (2) a3+b3+c3=1+3 a3+b3+c3=4