The correct option is C All the above
Let A=∣∣
∣
∣∣1+cos2xsin2xcos2xcos2x1+sin2xcos2xcos2xsin2x1+cos2x∣∣
∣
∣∣
So, By row transformation in A,
r2→r2−r1 and r3→r3−r1
A=∣∣
∣∣1+cos2xsin2xcos2x−110−101∣∣
∣∣
So, A=cos2x(1)+1(1+cos2x+sin2x)
A=2+cos2x
So, max value of A=α=3
and min value of A=β=1
So, α2+β10=9+1=10
α3−β99=27−1=26
2α2−18β4=18−18=0
So, all are true