If mean of x1,x2.........xn is y then means of b−ax1,b−ax2........b−axn is
Given the mean of x_1,x_2,.....,x_n is y
x1+x2+.....+xnn=yx1+x2+.....+xn=ny
Means of b−ax1,b−ax2,.....,b−axn is
=b−ax1+b−ax2+.....+b−axnn=(b+b+...+b′n′times)−ax1−ax2−.....−axnn=bn−a(x1+x2+.....+xn)n=bn−a(ny)n=bnn−anyn=b−ay
So Means of b−ax1,b−ax2,.....,b−axn is b−ay