If ∣cosx∣sin2x−32sinx+12=1, the possible values of x-
A
nπ or nπ+(−1)nπ6,nϵI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
nπ or 2nπ+π2 or nπ+(−1)nπ6,nϵI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
nπ+(−1)nπ6,nϵI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
nπ,nϵI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Anπ or nπ+(−1)nπ6,nϵI Bnπ or 2nπ+π2 or nπ+(−1)nπ6,nϵI Dnπ,nϵI
∣cosx∣=1 or sin2x−32sinx+12=0 Either sin2x−32sinx+12=0 or |cosx|=1 sin2x−32sinx+12=0 ⇒sinx=1 or sinx=12 |cosx|=1 ⇒cosx=−1 or ⇒cosx=1 Hence, option A,B,D are the correct options