If ∣ z∣=1 andw=z−1z+1 (where z ≠ −1) ,then Re(w) is
∣ z∣=1⇒∣ x+iy∣=1⇒ x2+y2=1 w=z−1z+1=(x−1)+iy(x+1)+iy×(x+1)−iy(x+1)−iy =x2+y2−1(x+1)2=2iy(x+1)2+y2=2iy(x+1)2+y2 (∵ x2+y2=1) ∴ Re(w)=0
If |z|=1 and ω=z−1z+1 (where, z≠−1), then Re (ω) is
If w=α+iβ,where β≠0 and z≠1, satisfies the condition that (w−¯wz1−z) is purely real, then the set of values of z is