The correct option is D −mn
We know, (x−y)2=x2−2xy+y2.
Expanding (mn−1)2 using the above identity, we get,
(mn−1)2=(mn)2−2(mn)(1)+(1)2
=(mn)2−2mn+1
=(mn)2+1+2(−mn)
So, (mn−1)2=(mn)2+1+2(−mn) --- (1)
Given, (mn−1)2=(mn)2+1+2y --- (2)
Comparing (1) and (2), we get, y = -mn.