If a→=26,b→=7and a→×b→=35, find a→·b→
Step 1: Solve for value of cosθ.
Given,
a→=26,b→=7,a→×b→=35
We know that,
a→×b→=a→b→sinθ⇒35=(26)(7)sinθ⇒sinθ=526
Using the identity, sin2A+cos2A=1
cosθ=1-sin2θ=1-5262
=26-2526=126
Step 2: Solve for a→·b→.
a→·b→=a→b→cosθ
=267126=7
Hence, the value of a→·b→ is 7