If n+1C3=2.nC2, then =
3
4
5
6
n+1C3=2.nC2
⇒(n+1)!3!(n−2)!=2×n!2!(n−2)!
⇒(n+1)n!3×2!(n−2)!=2×n!2!(n−2)!
⇒n+1=6
⇒n=5
nCr−1=330, nCr=462, nCr+1=462⇒r=