The correct option is
D 11 n+1C4=9 nC2(n+1)!(n−3)14!=9n!(n−2)!2!
(n+1)n!(n−3)!4!=9n!(n−2)(n−3)!2!
n+14×3×2!=9(n−2)2!
(n+1)(n−2)=12×9
n2−2n+n−2=108
n2−n−2=108
n2−n=110
n2−n−110=0
On simiplying, we get
n=11
∵n2−11n+10n−110=0
n(n−11)+10(n−11)=0
(n+10)(n−11)=0
n=11,−10
∵n≠−10
⇒n=11