Mole fraction of \(N_2\) gas
Given:
Partial pressure of \(N_2=0.987~bar\) and Henry's law constant for \(N_2=76.48~kbar=76.48\times 10^{3} bar\).
According to Henry's law,
Partial pressure \(p=K_H\times \text{moles fraction(x)}\)
So, \(x_{N_2}=\dfrac{P_{N_2}}{K_H}=\dfrac{0.987~bar}{76.48\times 10^3bar}\)
\(=1.29\times 10^{-5}\)
Moles of water
Given: Volume of water \(=1~L\)
We know, \(\text{density(d)}=\dfrac{\text{mass}}{\text{volume}}\)
We also know,
Density \((d)\) of water \(=1kg/L\)
Hence, mass of water \(=1~kg=1000~g\)
Molar mass of water\((H_2O)=2\times 1+16=18gmol^{-1}\)
\(\text{moles of water}=\dfrac{\text{mass of water}}{\text{molar mass of water}}\)
\(=\dfrac{1000~g}{18~g~mol^{-1}}=55.55~mol\)
Millimoles of \(N_2\) gas
Let the mole of \(N_2\) gas be \(n\).
Mole fraction \((x_{N_2})=\dfrac{\text{moles of}~N_2}{\text{moles of}~N_2+\text{moles of}~H_2O}\)
By putting the values, we get
\(1.29\times 10^{-5}=\dfrac{n~mol}{n~mol+55.5~mol}\)
\(n< < 55.5\)
\(1.29\times 10^{-5}=\dfrac{n}{55.5}\)
Thus, \(n=1.29\times 10^{-5}\times 55.5~mol\)
\(=7.16\times 10^{-4}~mol~or~0.716~mmol\)