If n≥2is a positive integer, then the sum of the series C2n+1+2c22+c23+c24+..+c2n is
nn+12n+212
nn-12n+16
nn+12n+16
n3n+12n+16
Explanation for correct option
Given that n≥2is a positive integer
∴C2n+1+2c22+c23+c24+..+c2n
=C2n+1+2c33+c23+c24+..+c2n∵cnn=cmm=C2n+1+2c34+c24+..+c2n∵cmn+cm-1n=cmn+1=C2n+1+2c35+..+c2n∵cmn+cm-1n=cmn+1
Proceeding in this way we get
=C2n+1+2c3n+c2n=C2n+1+2.c3n+1=n+1!2!n+1-2!+2·n+1!3!n+1-3!∵nCm=n!m!n-m!=n+1!2!n-1!+2·n+1!3!n-2!=nn+12+n-1nn+13=nn+112+n-13=nn+13+2n-26=nn+12n+16=nn+12n+16
Hence, option(C) i.e. nn+12n+16 is correct