If n>2 then sum the series n∑r=2(−2)r∣∣
∣∣n−2Cr−2n−2Cr−1n−2Cr−3112−10∣∣
∣∣
Open in App
Solution
Applying C1+C2+2C2 thus making two zeros in C1 Also n−2Cr−2+n−2Cr+2.n−2Cr−1 =[n−2Cr−2+n−2Cr−1]+[n−2Cr−1+n−2Cr] =n−1Cr−1+n−1Cr=nCr ∴Δ=∑nr=2(−2)rnCr =C2(−2)2+C3(−2)3+C4(−2)4++Cn(−2)n =(1+x)n−[C0+C1x], where x=−2 =(1−2)n−[1+n(−2)]=2n−1+(−1)n.