If nA denotes the number of elements in set A and if nA=4, n(B)=5 and n(A∩B)=3, then n(A×B)∩(B×A)=
8
9
10
11
Explanation for the correct option
Given that nA=4, n(B)=5 and n(A∩B)=3
For any given sets P and Q, we know that P×Q∩Q×P=P∩Q×Q∩P
Therefore, A×B∩B×A=A∩B×B∩A
∴nA×B∩B×A=nA∩B×B∩A=nA∩B×nB∩A∵nP×Q=nP×nQ=nA∩B×nA∩B∵A∩B=B∩A=3×3⇒nA×B∩B×A=9
Hence, the correct option is option(B) i.e. 9
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B)?