If nand r are integers such that 1≤r≤n,then C(n-1,r-1)n=
C(n,r)
C(n,r)r
C(n,r)n
none of these
Step: Explanation for correct option.
Option B:- C(n,r)r.
Solve for value of C(n-1,r-1)n
We know that
C(n,r)=n!r!(n-r)!
C(n-1,r-1)=(n-1)!(r-1)!(n-r)!
C(n-1,r-1)n=n·(n-1)!(r-1)!(n-r)!
=n!(r-1)!(n-r)! [Since n·(n-1)!=n!]
=r·n!r·(r-1)!(n-r)! [Multiply Numerator and Denominator with r]
=r·n!r!(n-r)!=r·C(n,r)
Hence, option B is the correct answer i.e., C(n,r)r.
Let r and n be positive integers such that 1≤r≤n. Then prove the following :
(i) nCrnCr−1=n−r+1r (ii) nn−1Cr−1=(n−r+1)nCr−1 (iii) nCrn−1Cr−1=nr (iv) nCr+2nCr−1+nCr−2=n+2Cr