If nC0, nC1, nC2,⋯, nCn denote the binomial coefficients in the expansion of (1+x)n and p+q=1 , then n∑r=0r2 nCr pr qn−r is
=n2p2−np(p−1) [∵p−1=q]
=n2p2+npq [∵q+p=1]
Find the coefficient of xn−2 in (nC0+nC1x+nC2x2.....nCnxn)×(nC0+nC1x+nC2x2.....nCnxn)