If nCr = 5 and nPr = 120, then determine the value of n, r.
Soln: nPrnCr = 1205 = 24
nCr = (nPr)(r!)
nPr[nPrr!] = 24
r! = 24
r = 4
Given nPr = 120
nP4 = 120
n!(n−4)! = 120
n(n-1)(n-2)(n-3) = 120
n = 5
Hence option (e)
If nCr = nCr−1 and nPr = nPr+1, then the value of n is
If nPr=720 and nCr=120, find the value of r.