GIven, n(∪)= 900, n(A)=300, n(B)=200 , n(A∩B)=100
We know that, n(A∪B)=n(A)+n(B)−n(A∩B) n(A∪B)=300+200−100 n(A∪B)=400
Now, n(A′∩B′) = n(U)−n(A∪B) n(A′∩B′) = 900−400=500
If n(U)=700, n(A)=200, n(B)=300 and n(A∩B)=100, then n(A′∩B′)= ___.
If n(∪)=700, n(A)=200, n(B)=300 , n(A∩B)=100, then n(A′∩B′)
If n(∪)= 700, n(A) = 200, n(B) = 300 , n(A∩B) = 100, then n(A′∩B′) = 300