The correct option is D An equivalence relation
For (a,b),(c,d)ϵN×N
(a,b)R(c,d)
⇒ad(b+c)=bc(a+d)
Reflexive: ab(b+a)=ba(a+b),∀abϵN
∴(a,b)R(a,b)
So, R is reflexive,
Symmetric: ad(b+c)=bc(a+d)
⇒bc(a+d)=ad(b+c)
⇒cd(d+a)=da(c+b)
⇒(c,d)R(a,b)
So, R is symmetric.
Transitive: For (a,b),(c,d),(e,f)ϵN×N
Let (a,b)R(c,d), (c,d)R(e,f)
∴ad(b+c)=bc(a+d) and cf(d+e)=de(c+f)
⇒adb+adc=bca+bcd....(i)
and cfd+cfe=dec+def...(ii)
On multiplying eq. (i) by ef and eq. (ii) by ab and then adding, we have
adbef+adcef+cfdab+cfeab
=bcaef+bcdef+decab+defab
⇒adcf(b+e)=bcde(a+f)
⇒af(b+e)=be(a+f)
⇒(a,b)R(e,f)
So, R is transitive.
Hence, R is an equivalence relation.