If nϵN and (1+4x+4x2)n=r=2n∑r=0arxr then value of 2n∑r=0a2r equals
A
9n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9n+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3n+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B9n+1 ∵1+4x+4x2=(1+2x)2 ∴(1+2x)2n=2n∑r=0arxr putting x=1 32n=2n∑r=0ar=a0+a1+a2+a3+.....+a2n....(i) and putting x=−1 1=r=2n∑r=0ar(−1)r=a0−a1+a2−a3+....+a2n...(ii) Now adding (i) and (ii) we get 2(a0+a2+a4+....+a2n)=32n+1 ⇒2r=n∑r=0a2r=9n+1 Hence choice (b) is correct answer.