Ifn∈N,n∑k=1Sin−1(xk)=nπ2thenn∑k=1xk=
∑nk=1sin−1(xk)=(nπ2)⇒sin−1x1+sin−1x2+.........+sin−1xn=(nπ2)asmeanvalueofsin−1x=(π2)∴forLHS=RHSvalueofeachsininversetermshouldbeequalto(π2)nowsin−1x1=sin−1x2=.........=sin−1xn=(π2)∴x1=1,x2=1,x3=1,.........,xn=1then∑nk=1xk=∑nk=11=n