Given equation
x2+2x−n=0⇒(x+1)2=1+n⇒x=−1±√1+n
For integral roots n+1 should be a perfect square.
Possible values of n+1 is
{9,16,25,36,49,64,81,100}
When n+1=9
x=−1±3=−4,2
Similarly every value of n+1 will give 2 integral roots.
Hence, the total number of integral solution is 16.