1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Continuity of a Function
If n is a mul...
Question
If n is a multiple of
3
, show that
1
−
n
−
3
2
+
(
n
−
4
)
(
n
−
5
)
⌊
3
−
(
n
−
5
)
(
n
−
6
)
(
n
−
7
)
⌊
4
+
.
.
.
.
.
+
(
−
1
)
r
−
1
(
n
−
r
−
1
)
(
n
−
r
−
2
)
.
.
.
.
(
n
−
2
r
+
1
)
⌊
r
+
.
.
.
.
.
.
,
is equal to
3
n
or
−
1
n
, according as n is odd or even.
Open in App
Solution
⇒
Here,
n
−
3
2
is the co efficient of
x
n
−
4
in
1
2
(
1
−
x
)
−
2
(
n
−
5
)
(
n
−
4
)
3
!
is the co efficient of
x
n
−
6
in
1
3
(
1
−
x
)
−
3
(
n
−
7
)
(
n
−
6
)
(
n
−
5
)
4
!
is the co efficient of
x
n
−
8
in
1
4
(
1
−
x
)
−
4
and so on
Hence
S
=
the co efficient of
x
n
in
x
2
(
1
−
x
)
−
1
−
1
2
x
4
(
1
−
x
)
−
2
+
1
3
x
6
(
1
−
x
)
−
3
−
1
4
x
8
(
1
−
x
)
−
4
+
.
.
.
.
=the co efficient of
x
n
in
log
{
1
+
x
2
(
1
−
x
)
−
1
}
But
1
+
x
2
1
−
x
=
(
1
−
x
+
x
2
)
(
1
−
x
)
(
1
+
x
)
(
1
+
x
)
=
1
+
x
3
1
+
x
2
∴
S
=
the co efficient of
x
n
in
log
(
1
+
x
3
)
−
log
(
1
−
x
2
)
If
n
=
6
r
, the co efficient of
x
n
is
−
1
2
r
from the first series and
1
3
r
from the second series.
∴
S
=
−
1
2
r
+
1
3
r
=
−
1
6
r
=
−
1
n
If
n
=
6
r
+
3
, the co efficient of
x
n
is
1
2
r
+
1
from first series and
0
from the second.
S
=
1
2
r
+
1
=
3
n
Suggest Corrections
0
Similar questions
Q.
If n is a multiple of
6
, show that each of the series
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
3
2
−
.
.
.
.
.
,
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
1
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
1
3
2
−
.
.
.
.
.
,
is equal to zero.
Q.
Prove that if
n
and
r
are positive integers
n
r
−
n
(
n
−
1
)
r
+
n
(
n
−
1
)
2
!
(
n
−
2
)
r
−
n
(
n
−
1
)
(
n
−
2
)
3
!
(
n
−
3
)
r
+
⋯
is equal to
0
if
r
be less than
n
, and to
n
!
if
r
=
n
.
Q.
The value of
lim
n
→
∞
n
∑
r
=
1
r
+
2.
n
−
1
∑
r
=
1
r
+
3.
n
−
2
∑
r
=
1
r
+
.
.
.
.
.
.
+
n
.1
n
4
is
Q.
If n is a positive integer, find the value of
2
n
−
(
n
−
1
)
2
n
−
2
+
(
n
−
2
)
(
n
−
3
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
2
n
−
6
+
.
.
.
.
.
;
and if n is a multiple of
3
,
show that
1
−
(
n
−
1
)
+
(
n
−
2
)
(
n
−
2
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
+
.
.
.
.
=
(
−
1
)
n
.
Q.
If
c
0
,
c
1
,
c
2
,
.
.
.
.
.
.
c
n
are the coefficients in the expansion of
(
1
+
x
)
n
, when
n
is a positive integer, prove that
(1)
c
0
−
c
1
+
c
2
−
c
3
+
.
.
.
.
.
.
.
+
(
−
1
)
r
c
r
=
(
−
1
)
r
|
n
−
1
–
––––
–
|
r
–
|
n
−
r
−
1
–
––––––––
–
(2)
c
0
−
2
c
1
+
3
c
2
−
4
c
3
+
.
.
.
.
.
.
.
+
(
−
1
)
n
(
n
+
1
)
c
n
=
0
(3)
c
2
0
−
c
2
1
+
c
2
2
−
c
2
3
+
.
.
.
.
.
.
.
+
(
−
1
)
n
c
2
n
=
0
,
or
(
−
1
)
n
2
c
n
2
,
according as
n
is odd or even.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Continuity of a Function
MATHEMATICS
Watch in App
Explore more
Continuity of a Function
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app