The correct option is
A 2n+23Question - if n is a multiple of 3 , the C0+C3+C6… is equal to
(A) 2n+23
(c) 2n+2(−1)n/33
(B) 2n−23
(D) 2n−2(−1)n3
Solution −(1+x)n=C0+C1x+C2x2+…+Cnxn
Substitute x=1 in
(1) ⇒2n=C0+C1+C2+C3+….+Cn−
Substitute x=ω in
(1)
⇒(1+ω)n=C0+C1ω+C2ω2+….+Cnωn
We know that 1+ω+ω2=0 and ω3=1
⇒(−ω2)n=C0+C1ω+C2ω2+C3+….+Cnωn
Substitute x=ω2in(1)
⇒(1+ω2)n=C0+C1ω2+C2ω4+…+Cnω2n
⇒(−ω)2=C0+C1ω2+C2ω+…+Cnω2n−(4)
(2)+(3)+(4)
⇒2n+(−1)n(ω2n+ωn)=[3C0+C1(1+ω+ω2)+C2(1+ω+ω2)+
C3+…]
⇒3(C0+C3+C6+…)=2n+(−1)n(ω2n+ωn)
ω2n+ωn=e2inJ3+e4inJ4=(cos2nπ3+cos4nπ3)+i(sin2nπ3+sin4nπ3)
=2cos(nπ)cos(−nπ3)+2isin(nπ)cos(−nπ3)
=2(−1)ncos(nπ3)
⇒C0+C3+C6+…=2n+2cosnπ33
⇒C0+C3+C6+….=2n+23
As given that n is a multiple of 3
Hence, (A) is the correct option.