⇒ Let (1+x)n=1+c1x+c2x2+...
(1+ix)n=1+ic1x−c2x2+ic3x3+c4x4+ic5x5−....
(1−ix)n=1−ic1x−c2x2+ic3x3+c4x4−ic5x5−....
∴2ix(c1−c3x2+ic5x4−....)=(1+ix)n−(1−ix)n
Put x2=3, so that x=√3, and let S1 denote the value of the first series;also as usual
Let w,w2 be the imaginary cube roots of unity;
so that w=−1+√−32;w2=−1−√−32
We have
2i√3S1=(1+√−3)n−(1−√−3)n
=(−2w2)n−(−2w)n
=2n−2n=0
when n is a multiple of 6, for then
(−w)n=1,(−w2)n=1
Put x2=13 and let S2denote the sum of the series, them;-
2i√3S2=(1+√−1√3)n−(1−√−1√3)n
=(√−3−1√−3)n−(√−3+1√−3)n
=(2w√−3)n−(−2w2√−3)n
=0
if n is a multiple of 6