The correct options are
A I is an even integer
B I is divisible by 22
C (I+f)2 is divisible by
22n+1(5√5+11)2n+1=I+F
Let(5√5−11)2n+1=F
Now, (a+b)n=nC0an+nC1an−1b+nC2an−2b2+..........nCnbn
⇒(a−b)n=nC0an−nC1an−1b+nC2an−2b2−..........nCnbn
⇒(a+b)n−(a−b)n=2[nC1an−1b+nC3an−3b3+.......]
∴ Putting a=5√5;b=11 and n=2n+1 , we get
⇒(5√5+11)2n+1−(5√5+11)2n−1=(I+F)−F
=2[2n+1C1(5√5)2n(11)1+2n+1C3(5√5)2n−2(11)3....]
⇒I+F−F=2K, K∈I
⇒I=2K
∴ I is an even integer.
Also, on taking 11 common, we get,
⇒I=22[2n+1C1(5√5)2n+2n+1C3(5√5)2n−2112]
⇒I=22m;m∈ I
∴I is divisible by 22
⇒(I+F)2=[(5√5+11)2n+1]2 = [(5√5+11)2]2n+1
=[125+121+110√5]2n+1
=[246+110√5]2n+1
⇒(I+F)2=22n+1[123+55√5]2n+1
=(I+F)2 is divisible by 22n+1
Hence, option : A,B,C.