If n is a positive integer and Ck=nCk, then the value of n∑k=1k3(CkCk−1)2 is
A
n(n+2)(n+1)212
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
n(n+1)(n+2)212
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n(n+1)(n+2)12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is An(n+2)(n+1)212 n∑k=1k3(CkCk−1)2=n∑k=1k3(n−k+1k)2[∵nCknCk−1=n−k+1k]=n∑k=1k(n−k+1)2=n∑k=1k[(n+1)2−2k(n+1)+k2]=(n+1)2n∑k=1k−2(n+1)n∑k=1k2+n∑k=1k3=(n+1)2⋅n(n+1)2−2(n+1)⋅n(n+1)(2n+1)6+n2(n+1)24=n(n+1)212[6(n+1)−4(2n+1)+3n]=n(n+1)212⋅(n+2)=n(n+2)(n+1)212