If n is a positive integer, and In=∫sin(nx)cosxdx, then In+In−2=
A
2(n−1)cos(n−1)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−2(n−1)cos(n−1)x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2(n−1)cos(n−2)x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2(n−1)cosx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C−2(n−1)cos(n−1)x In=∫sin(nx)cosxdx In−2=∫sin(n−2)cosxdx In+In−2=∫sin[nx]cosxdx+∫sin[(n−2)xcosxdx Use sin(A+B)+sin(A−B)=2sinAcosB ∴In+In−2=∫2sin(n−1)xcosxcosxdx =2∫sin(n−1)xdx=−2n−1cos(n−1)x+c ⇒In+In−2=−2(n−1)cos(n−1)x+c