⇒x=−1±√1+n ..... (1)
x will be an integer when 1+n is a perfect square.
⇒1+n=k2.
We have,
5≤n≤100
⇒6≤n+1≤101
⇒6≤k2≤101
⇒k2=9,16,25,36,49,64,81,100
⇒ n+1 has 8 different possible values.
∴ Possible values of x by putting n+1 values in eq. (1) we get,
x=−1±3,−1±4,−1±5,−1±6,−1±7,−1±8,−1±9,−1±10
x=−4,2,−5,3,−6,4,−7,5,−8,6,−9,7,−10,8,−11,9
Hence, there are 16 possible integral solutions to the given equation.