If n is a positive integer and ω≠1 is a cube root of unity, the number of possible values of n∑k=0[nk]ωk is?
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2 n∑k=0nkCωk=n0Cω0+n1Cω1+n2Cω2...........nkCωkn∑k=0nkCωk=n0C+n1Cω1+n2Cω2...........nkCωk(1+x)n=n0C+n1Cx1+n2Cx2...........nkCxk∴n∑k=0nkCωk=(1+ω)n=(−ω2)n=(−1)nω2n∣∣e∑nk=0nkCωk∣∣=∣∣e(−1)nω2n∣∣=∣∣e(−ω2)n∣∣ω2=−12−i√32ω2=−cos4π3−isin4π3∣∣e∑nk=0nkCωk∣∣=∣∣∣e−(−cos4π3−isin4π3)n∣∣∣=∣∣∣e(cos4nπ3+isin4nπ3)∣∣∣