wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 'n' is a positive integer and 'x' is any non-zero number, then prove that
C0+C1.x2+C2.x23+.....+Cn.xnn+1=(1+x)n+11(n+1)x

Open in App
Solution

(1+x)n=C0+C1x+C2x2+.....Cnxn
(1+x)n(n+1)=C0+C1x22+C2x33+....Cnxn+1n+1+C
Put x=0 LHS=(1)(n+1)
RHS=C
C=1n+1
(1+x)n+1n+1C=C0x+C1x22+C2x33+.....Cnxn+1x+1
[(1+x)n+11](n+1)=x(C0+C1x2+C2x23+....Cnxn(n+1))
C0+C1x2+C2x23+....Cnxn(n+1)=((1+x)n+11)(n+1)x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon