1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Greatest Binomial Coefficients
If n is a pos...
Question
If n is a positive integer greater than
3
, show that
n
3
+
n
(
n
−
1
)
⌊
2
(
n
−
2
)
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
⌊
4
(
n
−
4
)
3
+
.
.
.
.
=
n
2
(
n
+
3
)
2
n
−
4
.
Open in App
Solution
⇒
(
e
x
+
1
)
n
=
e
n
x
+
c
1
e
(
n
−
1
)
x
+
c
2
e
(
n
−
2
)
x
+
.
.
.
.
(
e
x
−
1
)
n
=
e
n
x
−
c
1
e
(
n
−
1
)
x
+
c
2
e
(
n
−
2
)
x
+
.
.
.
.
2
{
e
n
x
+
c
2
e
(
n
−
2
)
x
+
c
4
e
(
n
−
4
)
x
+
.
.
.
.
}
=
(
e
x
+
1
)
n
+
(
e
x
−
1
)
n
Equating co efficients of
x
3
, we have -
2
3
!
{
n
3
+
n
(
n
−
1
)
2
!
(
n
−
3
)
3
+
.
.
.
}
=
co efficient of
x
3
in
(
e
x
+
1
)
n
+
(
e
x
−
1
)
n
⇒
2
6
S
=
co efficient of
x
3
in
(
2
+
x
+
x
2
2
+
x
3
6
+
.
.
.
.
)
n
i.e., in,
n
.
2
n
−
1
(
x
+
x
2
2
+
x
3
6
)
+
n
(
n
−
1
)
2
!
2
n
−
3
(
x
+
x
2
2
)
2
+
n
(
n
−
1
)
(
n
−
2
)
3
!
2
n
−
3
.
x
3
∴
2
S
6
=
n
.
2
n
−
1
6
+
n
(
n
−
1
)
2
!
2
n
−
2
+
n
(
n
−
1
)
(
n
−
2
)
3
!
2
n
−
3
S
=
n
2
(
n
+
3
)
.
2
n
−
4
Suggest Corrections
0
Similar questions
Q.
If
n
is a positive integer, show that
(1)
n
n
+
1
−
n
(
n
−
1
)
n
+
1
+
n
(
n
−
1
)
2
!
(
n
−
2
)
n
+
1
−
⋯
=
1
2
n
(
n
+
1
)
!
;
(2)
n
n
−
(
n
+
1
)
(
n
−
1
)
n
+
(
n
+
1
)
n
2
!
(
n
−
2
)
n
−
⋯
=
1
;
the series in each case being extended to
n
terms; and
(3)
1
n
−
n
2
n
+
n
(
n
−
1
)
1
⋅
2
3
n
−
⋯
=
(
−
1
)
n
n
!
;
(4)
(
n
+
p
)
n
−
n
(
n
+
p
−
1
)
n
+
n
(
n
−
1
)
2
!
(
n
+
p
−
2
)
n
−
⋯
=
n
!
;
the series in the last two cases being extended to
n
+
1
terms.
Q.
The sum of the series
1
×
n
+
2
(
n
−
1
)
+
3
(
n
−
2
)
+
…
…
+
(
n
−
1
)
×
2
+
n
×
1
is
Q.
If n is a multiple of
6
, show that each of the series
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
3
2
−
.
.
.
.
.
,
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
1
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
1
3
2
−
.
.
.
.
.
,
is equal to zero.
Q.
The sum to
n
terms of the series
(
1
×
2
×
3
)
+
(
2
×
3
×
4
)
+
(
3
×
4
×
5
)
+
…
is
Q.
n
n
−
n
(
n
−
1
)
n
+
n
(
n
−
1
)
2
!
(
n
−
2
)
n
−
.
.
.
∞
=
3
a
×
n
!
.
Find
a
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Visualising the Terms
MATHEMATICS
Watch in App
Explore more
Greatest Binomial Coefficients
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app