wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If n is a positive integer greater than 3, show that n3+n(n1)2(n2)3+n(n1)(n2)(n3)4(n4)3+....=n2(n+3)2n4.

Open in App
Solution

(ex+1)n=enx+c1e(n1)x+c2e(n2)x+....
(ex1)n=enxc1e(n1)x+c2e(n2)x+....
2{enx+c2e(n2)x+c4e(n4)x+....}
=(ex+1)n+(ex1)n
Equating co efficients of x3, we have -
23!{n3+n(n1)2!(n3)3+...}= co efficient of x3 in (ex+1)n+(ex1)n
26S= co efficient of x3 in (2+x+x22+x36+....)n
i.e., in,
n.2n1(x+x22+x36)+n(n1)2!2n3(x+x22)2+n(n1)(n2)3!2n3.x3
2S6=n.2n16+n(n1)2!2n2+n(n1)(n2)3!2n3
S=n2(n+3).2n4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualising the Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon