If n is a positive integer, prove that
|Im(zn)|≤n|Im(z)||z|n−1
Im(z)=z−¯¯¯z2i
⇒Im(zn)=zn−¯zn2i
∴Fromequation(i)
∣∣∣zn−¯zn2i∣∣∣≤n∣∣∣z−¯z2i∣∣∣|z|n−1
⇒∣∣∣zn−¯znz−¯z∣∣∣≤n|z|n−1
Now,
∣∣∣zn−¯znz−¯z∣∣∣=|zn−1+zn−2¯z+zn−3¯z2+...+¯zn−1|
≤|zn−1|+|zn−2¯z|+|zn−3¯z2|+...+¯zn−1|
=|z|n−1+|z|n−2|¯z|+|z|n−3|¯z2|+...+|¯zn−1|
=|z|n−1+|z|n−1+|z|n−1+...+|z|n−1
(∵|z|=|¯z|)
=n|z|n−1
Hence proved.