1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Addition and Subtraction of a Matrix
If n is a p...
Question
If
n
is a positive integer, then find the value of
⎡
⎢
⎣
n
+
2
C
n
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
5
C
n
+
3
n
+
4
C
n
+
2
n
+
5
C
n
+
3
n
+
6
C
n
+
4
⎤
⎥
⎦
.
Open in App
Solution
∣
∣ ∣ ∣
∣
∣
∣ ∣ ∣
∣
n
+
2
C
n
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
5
C
n
+
3
n
+
4
C
n
+
2
n
+
5
C
n
+
3
n
+
6
C
n
+
4
∣
∣ ∣ ∣
∣
∣
∣ ∣ ∣
∣
we know that
n
C
r
+
n
C
r
−
1
=
n
+
1
C
r
⇒
n
+
1
C
r
−
n
C
r
−
1
=
n
C
r
−
−
−
−
−
−
−
1
Applying
R
3
→
R
3
−
R
2
and
R
2
→
R
2
−
R
1
⇒
∣
∣ ∣ ∣
∣
∣
∣ ∣ ∣
∣
n
+
2
C
n
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
2
C
n
+
1
n
+
3
C
n
+
2
n
+
4
C
n
+
3
n
+
3
C
n
+
2
n
+
4
C
n
+
3
n
+
5
C
n
+
4
∣
∣ ∣ ∣
∣
∣
∣ ∣ ∣
∣
(from equation - 1)
Applying
R
3
→
R
3
−
R
2
⇒
∣
∣ ∣ ∣
∣
∣
∣ ∣ ∣
∣
n
+
2
C
n
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
2
C
n
+
1
n
+
3
C
n
+
2
n
+
4
C
n
+
3
n
+
2
C
n
+
2
n
+
3
C
n
+
3
n
+
4
C
n
+
4
∣
∣ ∣ ∣
∣
∣
∣ ∣ ∣
∣
(from equation - 1)
⇒
∣
∣ ∣
∣
∣
∣ ∣
∣
n
+
2
C
2
n
+
3
C
2
n
+
4
C
2
n
+
2
n
+
3
n
+
4
1
1
1
∣
∣ ∣
∣
∣
∣ ∣
∣
(
∵
n
C
r
=
n
C
n
−
r
)
Expanding and simplifying gives
=
|
(
n
+
2
)
−
(
n
+
3
)
|
=
1
Suggest Corrections
0
Similar questions
Q.
If n is positive integer, then
∣
∣ ∣ ∣
∣
n
+
2
C
n
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
3
C
n
+
1
n
+
4
C
n
+
2
n
+
5
C
n
+
3
n
+
4
C
n
+
2
n
+
5
C
n
+
3
n
+
6
C
n
+
4
∣
∣ ∣ ∣
∣
is equal to
Q.
If
1
4
C
n
=
1
5
C
n
+
1
6
C
n
, then
n
=
Q.
If n is a positive integer, find the value of
2
n
−
(
n
−
1
)
2
n
−
2
+
(
n
−
2
)
(
n
−
3
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
2
n
−
6
+
.
.
.
.
.
;
and if n is a multiple of
3
,
show that
1
−
(
n
−
1
)
+
(
n
−
2
)
(
n
−
2
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
+
.
.
.
.
=
(
−
1
)
n
.
Q.
If
(
1
+
x
)
n
=
n
∑
r
=
0
n
C
r
x
n
,
then
C
0
1
⋅
2
2
2
+
C
1
2
⋅
3
2
3
+
C
2
3
⋅
4
2
4
+
⋯
+
C
n
(
n
+
1
)
(
n
+
2
)
2
n
+
2
is equal to
Q.
If n be a positive integer such that
n
≥
3
then the value of the sum to n terms of
1
⋅
n
−
(
n
−
1
)
1
!
(
n
−
1
)
+
(
n
−
1
)
(
n
−
2
)
2
!
(
n
−
2
)
−
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
3
!
(
n
−
3
)
+
.
.
.
.
.
.
.
is:
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Algebraic Operations
MATHEMATICS
Watch in App
Explore more
Addition and Subtraction of a Matrix
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app